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Objective To investigate the heterogeneity in clinical course among those with pediatric acute liver failure (PALF)
of indeterminate disease etiology.
Study design We studied participants enrolled in the PALF registry study with indeterminate final diagnosis.
Growthmixturemodelingwas used to analyze participants’ international normalized ratio, total bilirubin, and hepatic
encephalopathy trajectories in the first 7 days following enrollment. Participants with at least 3 values for 1 ormore of
themeasurementswere included.Weexamined the associationbetween the resulting latent subgroup classification
with participants’ characteristics and disease outcomes. Data from participants with PALF of specified etiologies
were used to investigate the potential diagnostic value of the latent subgroups.
Results In this sample of 380 participants with indeterminate final diagnosis, 115 (30%) experienced mild and
quickly improving disease trajectories and another 48 (13%) started with severe disease but improved by day 7.
The majority of participants (216, 57%) had disease trajectories that worsened over time. The identified patterns
of disease trajectories are predictive of outcome (P < .001). The trajectory patterns are associated with the under-
lying disease etiology (P < .001) for the 488 participants with PALF of specified etiologies.
Conclusions The clinical courses of participants with PALF of indeterminate disease etiology exhibit distinct tra-
jectory patterns, which have important prognostic and potentially diagnostic value. (J Pediatr 2016;171:163-70).

P
ediatric acute liver failure (PALF) is a life-threatening clinical syndrome in which children without previous history of
liver disease suffer from rapid loss of liver function. The disease may progress quickly and lead to severe impairment of
hepatic function within days or weeks, as evidenced in many children by jaundice, coagulation abnormalities, and he-

patic encephalopathy (HE). The outcomes of PALF are poor, and one-half of patients die or receive liver transplantation
(LTx).1

Medical management of PALF is largely supportive in the absence of a condition known to respond to specific therapy (eg,
acute acetaminophen toxicity, herpes simplex virus). LTx becomes an option once liver function deteriorates to such an extent
that recovery is judged to be unlikely. Because of the rapid progression of PALF in some patients, a timely decision to proceed to
LTx is needed to interrupt damaging sequelae associated with PALF, such as cerebral edema and renal injury. Yet, it is unde-
sirable for a patient to undergo LTx if survival with the native liver would have occurred.

Reliable prognostic tools are needed to predict the outcomes of PALF and to guide the LTx decision. The King’s College
Hospital Criteria (KCHC)2 is the only predictive model for acute liver failure developed in the pre-LTx era when patient out-
comes were limited to survival or death. Patients who met KCHC in the initial report had a high likelihood of death with a
positive predictive value of 97% for those with nonacetaminophen acute liver failure.2 However, when KCHC were recently
applied to a cohort of PALF study participants consisting of those who died or survived with their native liver to 21 days,
the positive predictive value of KCHC fell to 33%.3
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toxicity do die and those with herpes simplex can survive,
suggesting factors other than etiology play a role in deter-
mining outcome.

The 40%-50% of cases of PALF with an indeterminate
cause present a formidable challenge in predicting outcome
as underlying causes or treatment strategies are not known.4,5

Patients with indeterminate PALF were more likely to receive
LTx than are patients with PALF with specified etiologies.4

Importantly, those with an indeterminate diagnosis have
inherent heterogeneity likely involving the unknown under-
lying etiology, pathobiology, and outcomes.

The goal of this analysis was to determine whether PALF
dynamics, as measured by trajectories of disease markers,
could aid in the prognosis following PALF of indeterminate
etiology. Hence, this analysis attempts to determine if disease
trajectory over up to 7 days of observation can aid with deter-
mining who should undergo LTx and who may be able to
wait for signs of spontaneous improvement.
Methods

The PALF study group is a multicenter collaborative study
formed in 1999 to investigate the diagnosis, etiology, prog-
nosis, and management of PALF.1 The first phase of the
PALF study was an ancillary to the adult acute liver failure
study group, which was sponsored by the National Institutes
of Health-National Institute of Diabetes, Digestive, and Kid-
ney disease. During this initial phase, the study included 22
pediatric sites and a data coordinating center at the Univer-
sity of Texas Southwestern Medical School. The PALF study
transitioned to its second phase in 2005, when the pediatric
consortium received independent funding from the National
Institutes of Health-National Institute of Diabetes, Digestive,
and Kidney disease. The second phase of the PALF study con-
sisted of 20 sites and a data coordinating center at the Univer-
sity of Pittsburgh. There were 986 participants enrolled in the
PALF study between 1999 and 2010. The inclusion/exclusion
criteria and primary aims were identical for the 2 phases of
the PALF study.

The PALF study group created a registry database
including demographic, clinical, laboratory, and outcome
data among pediatric participants with acute liver failure. In-
clusion criteria were less than 18 years of age, no evidence of
chronic liver disease, biochemical evidence of acute liver
injury, and coagulopathy not corrected by vitamin K. Pa-
tients could be recruited to the study if the they had interna-
tional normalized ratio (INR) $1.5 (or prothrombin time
$15 seconds) in the presence of clinical HE or INR $2 (or
prothrombin time $20 seconds) regardless of presence or
absence of HE.1

The study was observational because patient management,
including the decision regarding LTx, was determined by
treating clinicians who followed the local standard of care.
The PALF study did not have any treatment protocols
outside of a clinical trial of NAC for non-APAP caused
PALF.6 Clinical measurements and laboratory test results
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were recorded daily for up to 7 consecutive days following
enrollment. In phase 1, the earliest outcome (hospital
discharge, death, LTx, survival without transplantation)
21 days following enrollment was recorded. Any of these out-
comes that occurred up to 1 year following enrollment was
recorded in phase 2. The daily maximum of the HE grade
was recorded.
The site principal investigator determined a primary etiol-

ogy at the time of study enrollment and a final diagnosis at
the time of the outcome event. An indeterminate etiology
was assigned if the participant could not be classified into
any specific etiology.

Statistical Analyses
To explore the heterogeneity in the clinical course among
participants with an indeterminate final etiology, partici-
pants were classified into latent subgroups based on the
dynamic trajectories of several key clinical and laboratory
measurements using growth mixture modeling (GMM), a
multilevel random effect modeling framework.7-10 The
GMM assumes that the heterogeneous study population,
exemplified by the indeterminate cohort, is comprised of
homogeneous latent subgroups that can be identified by
similar dynamic trajectories of data elements. Each latent
subgroup features its own set of variables, which defines a
pattern of changing clinical course for those in the same sub-
group. Therefore, the GMM serves as a powerful tool for
clustering subjects into unobserved subgroups and for esti-
mating the dynamic disease trajectories within different sub-
groups. Subject-specific random effect terms were used to
account for the within subject correlation across study days.
The GMM variables can be estimated via maximum likeli-

hood methods. The maximum likelihood estimators accom-
modate the “missing at random” (MAR) mechanism,
allowing use of a participant’s data even if his/her measures
were not available for each of the 7 days of data collection
or until an outcome was reached. The MAR assumption al-
lows the probability of data missing to depend on observed
data.
Rigorous model selection procedures were conducted to

determine the number of subgroups and the shape of the tra-
jectories. For model selection, we considered statistical mea-
sures (ie, the Bayesian information criteria [BIC], entropy,
the Lo, Mendell, and Rubin likelihood ratio test, and the
bootstrap likelihood ratio test [BLRT]), and the clinical
meaningfulness of the resulting classifications.9,10 The BIC
is a penalized-likelihood model selection criterion that ac-
counts for both the model fit and the number of variables,
whereby models with smaller BIC values are often preferred.
Entropy is a measure of the classification quality, where en-
tropy values close to 1 suggest good discrimination among
the latent subgroups.11 Entropy values of 0.8 or higher im-
plies adequate separation among latent subgroups. The Lo,
Mendell, and Rubin likelihood ratio test and BLRT are hy-
pothesis testing procedures, for which significant test results
suggest that the K-subgroup GMM is better than the (K-1)-
subgroup GMM. Here, K is an integer that denotes the
Li et al
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number of latent subgroups. These measures have their
respective strengths and limitations andmay not always agree
on the best GMM to select in terms of the optimal number of
latent subgroups and other model variables. Thus, clinical
judgment regarding potential latent subgroups was also
used for model selection. A GMM is regarded as clinically
meaningful if the trajectory patterns in different latent sub-
groups exhibit clinically important differences and if there
are adequate proportions of patients in each of the resulting
latent subgroups.

Based on results of univariable GMM analysis and a priori
clinical input, the 3 measures included in the multivariable
GMM model were INR, total bilirubin, and HE. Albumin
was considered but not included in the final GMM model,
on the basis of univariable analysis results. Total bilirubin,
INR, albumin, and HE are recognized biomarkers for pa-
tients with liver failure. For the proposed model to have gen-
eral clinical relevance, variables considered in the univariate
analysis should be rapidly available and believed to reflect
the dynamic changes in liver function. For example, INR, to-
tal bilirubin, and albumin are components of the Pediatric
End-Stage Liver Disease score, and HE is regarded as a key
feature of acute liver failure. INR was loge transformed
because of its skewness. HE categories were none, I-II, and
III-IV. HE grade may be recorded as not assessable when
the participant was on a respirator or in an induced coma.
Because these participants may have had severe disease and
poor outcomes, the missing HE may be informative. Hence,
for such participants, HE was imputed as HE grade III-IV if
the subject ever had an HE grade above 0 in the first 7 days
following enrollment and subsequently was determined
“not assessable” or on a ventilator. If HE was never greater
than 0 prior to being nonassessable, then nonassessable HE
was considered to be missing. All GMM analyses were con-
ducted in Mplus, v 6.12 (Muthen and Muthen, Los Angeles,
California). A minimum of 3 records for 1 or more measure-
ments was required for inclusion.

Following classification into a subgroup as defined by
GMM, participant characteristics and outcomes were
compared across subgroups. Continuous variables (eg, age)
were summarized using medians, 25th, and 75th percentiles
and categorical data (eg, 21-day outcome) was summarized
via frequencies and percentages. For formal statistical com-
parisons, the Kruskal-Wallis test for continuous variables
and the Pearson c2 test or its exact version was used for cat-
egorical variables as appropriate. Because the GMM differen-
tiated subgroups based on INR, total bilirubin, and HE,
statistical tests were not performed to determine whether tra-
jectory groups differed significantly with respect to these 3
variables. These analyses were conducted using SAS v 9.4.
(SAS Institute, Cary, North Carolina).

The estimated GMM variables can be used to classify a new
patient with PALF into 1 of the identified subgroups. Specif-
ically, we can calculate the posterior probabilities of the latent
subgroups based on the estimated GMM variables and the
patient’s INR, total bilirubin, and HE trajectories. Posterior
probabilities are the estimated probabilities that a participant
Clinical Course among Cases of Acute Liver Failure of Indetermin
belongs to different latent subgroups on the basis of his/her
observed data. The participant can be classified into the sub-
group with the largest posterior probability. The 488 partic-
ipants with specified etiology were subsequently classified
into the subgroups identified among those with indetermi-
nate etiology to investigate the diagnostic and prognostic
value of the subgroup classification. The exact c2 test was
used to determine the statistical significance of the associa-
tion between subgroup indices and diagnostic categories,
and the association between subgroup indices and 21-day
outcomes.
Results

Among the 986 participants enrolled in the 2 phases of the
PALF registry were 437 (44%) with an indeterminate final
etiology. There were 57 subjects with fewer than 3 values
for all 3 measurements (INR, total bilirubin, and HE)
excluded from analyses, leaving 380 indeterminate partici-
pants included. When compared with the patients included
in the analysis, the 57 excluded patients had higher INR
(P < .001) and worse HE (P < .001) but similar total bilirubin
(P = .5) at enrollment. Among the 380 patients with indeter-
minate final diagnosis (IND), the median age was 3.5 years
(25th-75th percentiles, 1.0-9.2 years), 211/380 (56%)
were male, the median INR was 2.7 (25th-75th percentiles,
2.1-3.9), and the HE grade was greater than 0 for 198
(54%) participants (Table I).
Based on extensive model selection procedures, we selected

a linear-trajectory GMMmodel with K = 5 latent subgroups.
The decision to use 5 subgroups was based on the following:
(1) the GMM model with K latent subgroups is statistically
better than that with K-1 subgroups for K = 2, 3, 4, 5
(BLRT P value <.05), and the GMMmodel with 6 subgroups
does not have statistical improvement over that with 5 sub-
groups (BLRT P-value = .2). Therefore, K = 5 is the best
choice according to hypothesis testing; (2) The model with
K = 5 had lower BIC than other choices of K between 2
and 6, and entropy for K = 5 (0.892) was exceeded only
when K = 2 (0.929), for which BIC was substantially higher
(14 256, which was second highest of BICs examined vs
13 252); and (3) The 5 subgroups exhibit clinically meaning-
ful differences in the identified trajectory patterns, and there
were adequate proportions of patients in all 5 latent sub-
groups.
In the selected model with 5 latent subgroups, the entropy

value was 0.89, suggesting clear delineation among the sub-
groups. The Figure presents the estimated disease
trajectories in the first 7 days, where the day of enrollment
is denoted by day 0. The identified subgroups showed
different patterns of evolution in disease trajectories of
INR, total bilirubin, and HE. Subgroups 1 and 2 feature
low and decreasing INR and steady or decreasing total
bilirubin trajectories. They are differentiated by total
bilirubin, which is higher in subgroup 2 than in group 1 at
time of enrollment and, though decreasing, remains higher
ate Diagnosis 165



Table I. Patient characteristics at enrollment for the participants (N = 380) with IND, overall, and by identified latent
subgroup index

Characteristics

All Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

P *N = 380
N = 59
(15.5%)

N = 57
(15%)

N = 48
(12.6%)

N = 130
(34.2%)

N = 86
(22.6%)

Age (y)† N = 380 N = 59 N = 57 N = 48 N = 130 N = 86 .1
3.5 1.7 4.2 3.1 3.3 5.7

(1.0, 9.2) (0.9, 6.3) (1.6, 11.0) (0.5, 9.4) (0.6, 9.3) (1.5, 10.0)
INR† N = 303 N = 46 N = 47 N = 41 N = 95 N = 74 N/A

2.7 2.3 2.2 3.6 2.6 3.1
(2.1, 3.9) (1.8, 3.7) (1.8, 2.7) (2.7, 7.0) (2.1, 3.5) (2.3, 5.1)

Total bilirubin† N = 312 N = 51 N = 51 N = 41 N = 100 N = 69 N/A
13.7 1.8 8.4 19.1 17.6 16.5

(5.1, 19.8) (0.9, 2.5) (5.4, 11.4) (9.8, 25.4) (12.5, 20.2) (13.4, 23.6)
HEz N = 367 N = 56 N = 54 N = 47 N = 126 N = 84 N/A
None 169 (46%) 21 (38%) 28 (52%) 14 (30%) 58 (46%) 48 (57%)
I-II 157 (43%) 28 (50%) 15 (28%) 25 (53%) 61 (48%) 28 (33%)
III-IV 41 (11%) 7 (13%) 11 (20%) 8 (17%) 7 (6%) 8 (10%)

Jaundicez N = 150 N = 35 N = 20 N = 15 N = 48 N = 32 <.001
Yes 102 (68%) 5 (14%) 14 (70%) 9 (60%) 45 (94%) 29 (91%)

Ascitesz N = 378 N = 59 N = 57 N = 48 N = 128 N = 86 .002
Yes 71 (19%) 3 (5%) 5 (9%) 11 (23%) 33 (26%) 19 (22%)

ALT (U/L)† N = 297 N = 49 N = 46 N = 41 N = 95 N = 66 <.001
1897 3615 2209 1390 1350 1992

(793, 3156) (2051, 6545) (879, 3278) (896, 3893) (461, 2372) (1074, 2980)
Albumin† N = 323 N = 55 N = 51 N = 42 N = 103 N = 72 .1

2.9 2.8 3.0 2.8 2.7 2.9
(2.5, 3.2) (2.3, 3.3) (2.6, 3.2) (2.6, 3.2) (2.4, 3.1) (2.6, 3.4)

ALT, alanine aminotransferase; N/A, not applicable.
*The P values reflect the difference across the 5 subgroups. Statistical tests were not conducted for the 3 elements (INR, total bilirubin, and HE) used for subgroup classification. Statistical tests were
conducted for age, jaundice, ascites, ALT, and albumin, which were not used for subgroup classification in the GMM model.
†Summarized by median (25th and 75th percentiles).
zSummarized by frequency (%).
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in group 2 than group 1 at the end of day 6. The probabilities
of having no HE increase with time for both subgroups and
exceed 0.9 on day 6, and the probabilities of having moderate
HE of I-II or high HE or III-IV both decrease with time
(Figure, C-E). Groups 3 and 4 had higher INR and total
bilirubin than groups 1 and 2 at enrollment with group 3
having higher values of each than group 4 at enrollment.
The disease trajectories of the 3 measures among group 3
participants tended to improve over time. On day 6, the
estimated INR for group 3 is below 2, the estimated total
bilirubin in group 3 is approximately 12 mg/dL, and the
estimated probability of having no HE for group 3 is over
0.5 (Figure, A-C). By comparison, both the INR trajectory
and the total bilirubin trajectory appear slightly increasing
for group 4 (Figure, A-B). The probabilities of having mild
HE of I-II or having high HE of III-IV appear relatively
stable for group 4. On day 4, the trajectory values in group
4 are worse than those in group 3 in all 3 measures. Group
5 appears to have the worst disease trajectories with high
and increasing INR and total bilirubin. The probability of
having HE grade of III-IV in group 5 approaches 0.7 at day
6 (Figure, E). The probability of HE grade of III or IV at
day 6 is <0.2 for all of the other subgroups.

The most common trajectory was subgroup 4 with 130
(34%) participants. There were similar numbers of partici-
pants in subgroups 1, 2, and 3 with 59 (16%), 57 (15%),
and 48 (13%) participants, respectively. The remaining 86
(23%) participants were in subgroup 5.
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Table II (available at www.jpeds.com) presents the mean
of estimated posterior probabilities by estimated latent
subgroup index. The results suggest that the GMM
distinguishes between the 5 subgroups well. For example,
the mean posterior probability of belonging to subgroups
1-2 is 0.01 for patients who were classified into subgroup 4;
the mean posterior probability of belonging to subgroup 3
and 5 is 0.031 and 0.029, respectively, for a subgroup 4
patients. This result suggests that the GMM is able to
classify patients with IND with a high degree of certainty.
Participant characteristics at study enrollment by sub-

group are summarized in Table I. The proportions of
participants with ascites were higher in groups 3-5 than
groups 1 and 2 (P = .002), where the proportions were
<10% for groups 1-2 but >20% for groups 3-5. However,
the numerical differences in ascites proportions may not be
apparent enough for practical discriminations. Alanine
aminotransferase was highest in group 1, followed by group
2 and 5 (P < .001). The distributions of age and albumin
were not significantly different across the latent subgroups.
The 21-day outcomes differ significantly among the dis-

ease trajectory subgroups (P < .001; Table III). For
example, the proportions of subjects who were alive
without LTx at day 21 were 95% for group 1 and 93% for
group 2. For group 3, only 2/48 (4%) died within 21 days,
however, 14 (29%) underwent LTx mostly by day 7.
Although the proportions of death and LTx by day 7 were
similar between group 3 and 4, participants in group 4
Li et al
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Figure. Estimated disease trajectories for the 5 latent subgroups in the first 7 days following enrollment. Day 0 corresponds to
the day of enrollment. A, Trajectory of the international normalized ratio and B, total bilirubin for each subgroup. C, Probability
that a participant within each subgroup will have a hepatic encephalopathy score of 0, D, I or II, or E, III or IV.
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were more likely to die (1/48, 2% vs 9/130, 7%) or undergo
LTx (1/48, 2% vs 30/130, 23%) between day 8 and 21. Only
3/86 (3%) subjects in group 5 were alive without LTx at
day 21. The majority (80%) of group 5 participants
underwent LTx by day 21 and 16% died.

Of the 549 participants with PALF of specified etiologies
(determined final diagnosis [non-IND]), there were 488
who had at least 3 values for 1 or more 3 measurements.
To explore the association between the potential subgroup
index and the underlying disease, these participants were
classified into the previously identified latent subgroups
Table III. Summary of 21-day outcomes among participants

All Subgroup 1

N = 380 N = 59

21-d outcome N = 379 N = 58
Death by d 7 14 (4%) 0 (0%)
LTx by d 7 110 (29%) 0 (0%)
Death between d 8 and 21 19 (5%) 3 (5%)
LTx between d 8 and 21 41 (11%) 0 (0%)
Alive with native liver at d 21 195 (52%) 55 (95%)

Total death by d 21 33 (9%) 3 (5%)
Total LTx by d 21 151 (40%) 0 (0%)

Each column represents the distribution of the 21-day outcome, overall or within a certain subgroup.
(P < .001).

Clinical Course among Cases of Acute Liver Failure of Indetermin
(Table IV). There were 196/488 (40%) classified into either
group 4 or 5, the 2 groups with worsening trajectories,
compared with 216/380 (55%) among the participants with
IND. Only 5/107 (5%) participants with a final diagnosis of
APAP were classified into group 4 or 5. Among
participants with a final diagnosis of viral hepatitis other
than hepatitis A/B/C/E, such as herpes simplex, Epstein-
Barr virus, and cytomegalovirus, there were 36/54 (67%)
who were assigned to group 4 or group 5. Eight (36%) of
the 22 participants with hemophagocytic syndrome were
classified into group 5. These results demonstrate that the
with IND

Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

N = 57 N = 48 N = 130 N = 86

N = 57 N = 48 N = 130 N = 86
2 (4%) 1 (2%) 3 (2%) 8 (9%)
2 (4%) 13 (27%) 36 (28%) 59 (69%)
0 (0%) 1 (2%) 9 (7%) 6 (7%)
0 (0%) 1 (2%) 30 (23%) 10 (12%)
53 (93%) 32 (67%) 52 (40%) 3 (3%)
2 (4%) 2 (4%) 12 (9%) 14 (16%)
2 (4%) 14 (29%) 66 (51%) 69 (80%)

The distribution of the 21-day outcome are significantly different across the 5 latent subgroups

ate Diagnosis 167



Table IV. The distribution of subgroup classification among the patients (N = 488) with identified disease etiologies
(non-IND) and sufficient data on INR, total bilirubin, and HE, overall and by disease etiology

Categories N Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

All non-IND 488 136 (28%) 95 (19%) 61 (13%) 135 (28%) 61 (13%)
Diagnosis
Acetaminophen 107 71 (66%) 20 (19%) 11 (10%) 2 (2%) 3 (3%)
Drug-induced hepatitis 21 5 (24%) 7 (33%) 2 (10%) 6 (29%) 1 (5%)
Hemophagocytic Syndrome 22 1 (5%) 5 (23%) 4 (18%) 4 (18%) 8 (36%)
Hepatitis, A/B/C/E 11 1 (9%) 7 (64%) 1 (9%) 2 (18%) 0 (0%)
Other viral hepatitis 54 11 (20%) 4 (7%) 3 (6%) 26 (48%) 10 (19%)
Shock/ischemia 31 12 (39%) 6 (19%) 7 (23%) 2 (6%) 4 (13%)
Neonatal iron storage 26 1 (4%) 2 (8%) 1 (4%) 15 (58%) 7 (27%)
Veno-occlusive disease 12 0 (0%) 3 (25%) 2 (17%) 7 (58%) 0 (0%)
Wilsons disease 31 0 (0%) 9 (29%) 6 (19%) 12 (39%) 4 (13%)
Other metabolic 58 11 (19%) 14 (24%) 14 (24%) 15 (26%) 4 (7%)
Autoimmune hepatitis 63 5 (8%) 12 (19%) 7 (11%) 30 (48%) 9 (14%)
Other diagnosis 31 11 (35%) 3 (10%) 2 (6%) 9 (29%) 6 (19%)
Multiple 21 7 (33%) 3 (14%) 1 (5%) 5 (24%) 5 (24%)

Each row represents the distribution of subgroup classifications within a specific diagnostic category. The distributions of subgroups are significantly different across different diagnostic categories
(P < .001).
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subgroup indices are strongly associated with the underlying
PALF etiology (P < .001), so may carry important diagnostic
value for the indeterminate group.

In addition, we summarized the 21-day outcomes among
the 488 patients with non-IND PALF by their latent sub-
group indices (Table V; available at www.jpeds.com). The
results agree with those observed in Table III, and suggest
that the subgroup indices also carry prognostic values for
patients with PALF with a specified disease etiology
(P < .001).
Discussion

PALF is a dynamic clinical syndrome in which patients can be
observed to improve, progress to a fatal outcome, or experi-
ence clinical deterioration followed by full recovery as a result
of directed therapies or supportive care. The natural history
of PALF is interrupted by LTx. Although LTx can be life-
saving, it is also life-altering and should be avoided in a child
who would have fully recovered without LTx. In this work,
we employed GMM to identify clinically meaningful latent
subgroups using the dynamic clinical and biochemical trends
among participants with PALF of indeterminate disease etiol-
ogy. The 5 latent subgroups feature distinct clinical courses,
and the subgroups were shown to be significantly associated
with 21-day outcomes. This work systematically studied the
dynamic clinical courses of PALF and explored the predictive
value of the clinical courses.

Medical and transplant decisions relative to both listing
for, and accepting, an organ are addressed continuously by
the clinician through the hospital course using a complex
array of factors.12 Distilling multiple clinical and biochemical
measures into a practical model that can be used at the
bedside for each decision interval remains a challenge. Previ-
ous predictive models for ALF in adults and children have
included clinical and biochemical measures that are objective
(eg, INR, bilirubin, ammonia, age) or subjective (eg, jaun-
168
dice, encephalopathy) at the time of admission to hospital,
the highest recorded or “peak” value,13,14 or combinations
of these data elements.2,15-17 Measures obtained only at
admission are limited by their inability to account for disease
progression or improvement during the ensuing days. Utili-
zation of a peak value is problematic given the uncertainty of
when that value may be achieved. For example, a peak value
may represent the initial result obtained, as we see for the INR
value in groups 1, 2, and 3 in our model, and the INR may
increase over time as in groups 4 and 5. A study from New
Delhi, where the option of LTx was not available, found dy-
namic changes in HE, INR, arterial ammonia, and total bili-
rubin collected over 3 hospital days to be predictive of
survival or death.18 The study involved adults with etiologies
quite different from those in the PALF study, but it does
point to the potential usefulness of dynamic changes within
a manageable palette of variables to predict outcome.
The GMM model we constructed may serve as a useful

prognostic tool for a new patient with PALF with an indeter-
minate or established disease etiology. Using clinical measures
routinely obtained for patients with PALF, we were able to
classify participants with PALF into 1 of the 5 subgroups
each with unique dynamic trajectories of INR, total bilirubin,
andHE that were associated with outcomes. In a patient with a
clinical trajectory mirroring subgroup 1 or 2, a decision to
proceed with LTx should be made with caution given the
high likelihood of spontaneous survival in over 92% of pa-
tients with similar trajectories. Subjects in subgroup 3 had a
trajectory of improvement in all 3 measured variables that
might suggest an opportunity for spontaneous recovery, yet
LTx occurred in 14/48 (29%). Careful assessment of the
need for LTx in patients with similar trajectories would appear
to be worthwhile. Participants in subgroup 4 were found to
have an INR and total bilirubin that increased over the 7-
day observation period. Although the degree of increase in
the laboratory values was relatively modest and HE was clini-
cally mild (0-II) in the majority, participants in the subgroup
experienced a high frequency of LTx (51%). LTx may be
Li et al
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appropriate for patients classified into subgroups 4 or 5,
although the high rates of LTx in the 2 groups preclude the
possibility of observing that some of these participants may
have improved if data were available beyond 7 days. We
have included 4 virtual clinical illustrations (Appendix 2;
available at www.jpeds.com) of how one might use the
GMM at the bedside to assist in assessing the potential
outcome for a patient with more the 3, but less than 7 days
of data.

Our model demonstrates its potential usefulness for par-
ticipants with either an IND or non-IND. For our results
to be used for clinical decision-making, however, it will be
necessary to further validate our results. Moreover, similar
to other prognostic tools, the model should be used in
conjunction with, and not as a replacement for, clinical
judgements regarding short-term disease status. The timing
of availability of organs is also critical and needs to be taken
into account.

The modeling procedure utilized the information for INR,
total bilirubin, and HE for up to 7 days. However, patients
with fewer days of measurements can still be classified, just
with less classification accuracy. In these cases, the reliability
of the classification may depend on many things, such as the
specific days of measurement (eg, the measurements on days
0, 3, and 5 may provide richer information than the measure-
ments on days 0, 1, and 2, despite that the total number of
days of measurements is the same) and the variability of an
individual trajectory. One way to assess the reliability of the
classification in practice is to examine the posterior probabil-
ities that the patient belongs to each of the 5 latent subgroups,
which can be calculated based on his/her available trajectory
data. The situation when 1 of the 5 posterior probabilities ex-
ceeds 0.8 would provide confidence about the classification.
When more updated data become available, we suggest that
the posterior probabilities be updated and the resulting sub-
group classification is re-examined.

Ideally, determining the trajectory of a clinical condition
would begin with the day of disease onset. For the majority
of PALF cases, however, the day of onset cannot be precisely
determined. Nonspecific symptoms may have been present
for hours, days, or even weeks before a clinical suspicion
prompted laboratory tests that met PALF study entry criteria.
In our analysis, we used data in the first 7 days following
enrollment to serve as a window into the clinical trajectory
of what is considered to be a rapidly evolving condition.
The study captured data at the earliest possible interval
following consent the family of the critically ill child.

From the day of enrollment, the trajectory data were only
available for 7 days in the first 2 phases of the PALF study. For
participants with an outcome beyond the 7 days of data
collection, it is possible the trajectory after the first 7 days
would differ from the initial trajectory. We recognize that
it may be necessary to extend comprehensive data analysis
beyond 7 days. We speculate the long-term trajectories may
change over time, reflecting different stages of a longer clin-
ical course. Future studies will assess the GMM using detailed
clinical and laboratory assessments beyond 7 days.
Clinical Course among Cases of Acute Liver Failure of Indetermin
There are some limitations in this analysis. First, we have
excluded patients with fewer than 3 measurements for all 3
trajectories because their limited trajectory data would not
enable a good classification. As a result, the participants
with PALF who experienced the outcome (death, LTx, or
hospital discharge) quickly after enrollment were not
included. Therefore, our results only apply to patients
with PALF who remained alive without undergoing LTx
for 3 or more days. Second, because the clinical measure-
ments are only available for up to 7 days, we adopted the
linear trajectory assumption to model the trajectory pat-
terns in the GMM. With the sample size, the linear trajec-
tory model strikes a balance between the model fit quality
and the discriminative ability of the classification. With
wider time range and larger sample size, it may be worth-
while to consider more complicated trajectory models,
such as the piecewise-linear trajectory model, which can
accommodate richer trajectory patterns. Furthermore, we
adopted the MAR assumption in our estimation proce-
dures. There are 2 reasons to believe that MAR may be
appropriate for this analysis. The first is that missing data
were due to various reasons, including both positive (hospi-
tal discharge) and negative (death) outcomes, and blood
volume considerations, which is a bigger issue for younger
participants. The second reason is that the 3 measures we
studied are quite informative for the disease outcomes of
death, LTx, and spontaneous recovery. The part of missing
data that can be explained by the observed values of INR,
total bilirubin, and HE will not bias the model estimates.
Note that we did not include the event time outcomes
(eg, time to death and LTx) in the statistical modeling, so
that we can assess the prognostic value of the trajectories
independently without assuming it in the modeling build-
ing procedure. A joint modeling procedure may enable us
to achieve latent subgroup classifications using both the
clinical trajectories and the event time outcomes.
In conclusion, this study examined the trajectories of 3 key

clinical and laboratory measures among a large cohort of pa-
tients with PALF without a specified disease etiology. The
GMM accounts for the heterogeneity in disease etiology and
progression pattern and, furthermore, entails a meaningful
and rigorous classification according to participants’ disease
trajectories. The results reported shed insight into the predic-
tive value of the dynamic trajectory patterns, and show prom-
ise as a powerful and reliable prognostic tool for new patients
with PALF with or without an identified disease etiology. n
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Appendix 1

Additional members of the PALF Study Group include:
Current Sites, Principal Investigators and Coordinators–

Kathryn Bukauskas, RN, CCRC (Children’s Hospital of
Pittsburgh of UPMC, Pittsburgh, Pennsylvania); Michael
R. Narkewicz, MD, Michelle Hite, MA, CCRC (Children’s
Hospital Colorado, Aurora, Colorado); Kathleen M.
Loomes, MD, Elizabeth B. Rand, MD, David Piccoli, MD,
Deborah Kawchak, MS, RD (Children’s Hospital of Phila-
delphia, Philadelphia, Pennsylvania); Rene Romero, MD,
Saul Karpen, MD, PhD, Liezl de la Cruz-Tracy, CCRC
(Emory University, Atlanta, Georgia); Vicky Ng, MD, Kel-
sey Hunt, Clinical Research Coordinator (Hospital for
Sick Children, Toronto, Ontario, Canada); Girish C. Sub-
barao, MD, Ann Klipsch, RN (Indiana University Riley Hos-
pital, Indianapolis, Indiana); Estella M. Alonso, MD, Lisa
Sorenson, PhD, Susan Kelly, RN, BSN, Dhey Delute, RN,
CCRC, Katie Neighbors, MPH, CCRC (Lurie Children’s
Hospital of Chicago, Chicago, Illinois); Philip J. Rosenthal,
MD, Shannon Fleck, Clinical Research Coordinator (Uni-
versity of California San Francisco, San Francisco, Califor-
nia); Mike A. Leonis, MD, PhD, John Bucuvalas, MD,
Tracie Horning, Clinical Research Coordinator (University
of Cincinnati, Cincinnati, Ohio); Norberto Rodriguez Baez,
MD, Shirley Montanye, RN, Clinical Research Coordinator,
Margaret Cowie, Clinical Research Coordinator (University
of Texas Southwestern, Dallas, Texas); Karen Murray, MD,
Melissa Young, Clinical Research Coordinator, Heather
Vendettuoli, Clinical Research Coordinator (University of
Washington, Seattle, Washington); David A. Rudnick,
MD, PhD, Ross W. Shepherd, MD, Kathy Harris, Clinical
Research Coordinator (Washington University, St. Louis,
Missouri).

Previous Sites, Principal Investigators and Coordina-
tors–Saul J. Karpen, MD, PhD, Alejandro De La Torre,
Clinical Research Coordinator (Baylor College of Medi-
cine, Houston, Texas); Dominic Dell Olio, MD, Deirdre
Kelly, MD, Carla Lloyd, Clinical Research Coordinator
(Birmingham Children’s Hospital, Birmingham, United
Kingdom); Steven J. Lobritto, MD, Sumerah Bakhsh,
MPH, Clinical Research Coordinator (Columbia Univer-
sity, New York, New York); Maureen Jonas, MD, Scott
A. Elifoson, MD, Roshan Raza, MBBS (Harvard Medical
School, Boston, Massachusetts); Kathleen B. Schwarz,
MD, Wikrom W. Karnsakul, MD, Mary Kay Alford, RN,
MSN, CPNP (Johns Hopkins University, Baltimore, Mary-
land); Anil Dhawan, MD, Emer Fitzpatrick, MD (King’s
College Hospital, London, United Kingdom); Nanda N.
Kerkar, MD, Brandy Haydel, CCRC, Sreevidya Naraya-
nappa, Clinical Research Coordinator (Mt. Sinai School
of Medicine, New York, New York); M. James Lopez,
MD, PhD, Victoria Shieck, RN, BSN (University of Mich-
igan, Ann Arbor, Michigan).

Appendix 2

Detailed Illustration of the Subgroup Classification
We illustrate the subgroup classification for several virtual
participants. The classification is conducted through a com-
puter algorithm we developed, which uses the GMM results
to calculate the posterior probabilities of the 5 latent sub-
groups. The participant should be classified into the sub-
group with the largest posterior probability.
For future research, we plan to further validate the al-

gorithm on a new cohort of patients with PALF. After
that, the algorithm will be transformed into a user-
friendly web interface, where a clinician can input the
observed trajectory data to obtain the estimated posterior
probabilities.
Using participant 1’s data for all 7 days (Appendix

Table I), his/her estimated posterior probabilities for
subgroups 1-5 are 0, 0.97, 0.03, 0, and 0. The 5 posterior
probabilities always sum up to 1, and the person was
classified into the subgroup with the largest posterior
probability. Therefore, this participant was classified into
subgroup 2.

If we only use participant 1’s data up till day 4, the poste-
rior probabilities for subgroups 1-5 are 0, 0.82, 0.17, 0.01, 0.
The person would still be classified into subgroup 2. Howev-
er, the certainty of the classification may reduce when we
have fewer data points. The person’s 21-day outcome is alive
with native liver.
Participant 2 had improving INR but worsening total bili-

rubin and HE. Using all his/her data (Appendix Table II),
her posterior probabilities for subgroups 1-5 are 0, 0, 0, 0,
1. Thus, participant 2 was classified into subgroup 5.

Appendix Table I. Participant 1

D 0 D 1 D 2 D 3 D 4 D 5 D 6

INR * 1.80 1.90 1.90 1.20 1.40 1.30
Total bilirubin (mg/dL) * 15.1 * 11.9 10.2 8.8 6.5
Encephalopathy I-II 0 0 0 0 0 0

Each row presents a measure, and the columns represent the value of the measure for 7
consecutive days since the day of enrollment.
*Missing data.

Appendix Table II. Participant 2

D 0 D 1 D 2 D 3 D 4 D 5 D 6

INR 2.6 2.2 2.5 1.6 1.9 * *
Total bilirubin (mg/dL) 11.2 14.6 18.8 21.2 20.6 * *
Encephalopathy 0 I-II III-IV III-IV III-IV * *

*Missing data.
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Appendix Table IV. Participant 4

D 0 D 1 D 2 D 3 D 4 D 5 D 6

INR 5.1 4.0 4.2 4.7 4.7 4.6 4.1
Total bilirubin (mg/dL) 31.7 37 32.2 38.8 32.8 33.9 32.9
Encephalopathy 0 I-II I-II I-II * I-II I-II

*Missing data.

Appendix Table III. Participant 3

D 0 D 1 D 2 D 3 D 4 D 5 D 6

INR 2.1 2.2 2.4 3.0 3.2 2.9 3.3
Total bilirubin (mg/dL) 14.7 16.9 17 20.2 20.9 21.6 23.4
Encephalopathy 0 0 0 0 0 0 0

If we only use the data from day 0 to day 3, the posterior
probabilities are still 0, 0, 0, 0, 1. The person’s 21-day
outcome is death.

On the basis of day 0-day 6 data, the estimated posterior
probabilities for subgroups 1-5 for participant 3 (Appendix
Table III) are 0, 0, 0, 1, 0. Thus, this is a subgroup 4
participant.

If we only use the data between day 0 and day 4, then the
posterior probabilities for the 5 subgroups are 0, 0, 0, 0.98,
0.02, still leading to subgroup 4. This participant’s 21-day
outcome is LTx.

Using all the data from day 0 to day 6, the posterior prob-
ability estimates for participant 4 (Appendix Table IV) are 0,
0, 0, 1, 0. Thus, the participant was classified into subgroup 4.

If we only use the data between day 0 and day 4, then the
posterior probabilities are 0, 0, 0, 0.41, 0.59. The probabilities
for subgroup 4 and subgroup 5 are both not low. Therefore,
the classification for this participant was not that certain
when fewer data points were available. On day 4, we can
only say that this participant belongs to either subgroup 4
or subgroup 5. This participant’s 21-day outcome is LTx.
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Table II. Mean of estimated posterior probabilities (row) by latent subgroup index (column)* for the participants
(N = 380) with IND

Subgroup 1 (N = 59) Subgroup 2 (N = 57) Subgroup 3 (N = 48) Subgroup 4 (N = 130) Subgroup 5 (N = 86)

Subgroup 1 0.961 0.005 0.001 0.001 0.000
Subgroup 2 0.021 0.954 0.021 0.009 0.000
Subgroup 3 0.015 0.029 0.935 0.031 0.044
Subgroup 4 0.001 0.010 0.023 0.929 0.049
Subgroup 5 0.002 0.002 0.020 0.029 0.907

*For each participant, the GMM calculates his/her posterior probabilities of belonging to different latent subgroups. Then, the GMM classifies the participant into the subgroup with the largest pos-
terior probability. The columns here represent the latent subgroup that the participants were classified into. Within each column, the rows represent the mean posterior probabilities of belonging to
different subgroups.

Table V. The distribution of 21-day outcomes among patients with non-IND (N = 488) estimated latent subgroup index,
where the P value between the 21-day outcome and the latent subgroup index is <.001

Characteristics

All Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

N = 488 N = 136 N = 95 N = 61 N = 135 N = 61

21-d outcome N = 488 N = 136 N = 95 N = 61 N = 135 N = 61
Death by d 7 30 (6%) 2 (1%) 1 (1%) 4 (7%) 12 (9%) 11 (18%)
LTx by d 7 56 (11%) 1 (1%) 5 (5%) 9 (15%) 18 (13%) 23 (38%)
Death between d 8 and 21 29 (6%) 0 (0%) 3 (3%) 2 (3%) 16 (12%) 8 (13%)
LTx between d 8 and 21 20 (4%) 0 (0%) 1 (1%) 0 (0%) 16 (12%) 3 (5%)
Alive with native liver at d 21 353 (72%) 133 (98%) 85 (89%) 46 (75%) 73 (54%) 16 (26%)

Total death by d 21 59 (12%) 2 (1%) 4 (4%) 6 (10%) 28 (21%) 19 (31%)
Total LTx by d 21 76 (16%) 1 (1%) 6 (6%) 9 (15%) 34 (25%) 26 (43%)
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